If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-95x+450=0
a = 5; b = -95; c = +450;
Δ = b2-4ac
Δ = -952-4·5·450
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-95)-5}{2*5}=\frac{90}{10} =9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-95)+5}{2*5}=\frac{100}{10} =10 $
| -2+5w-7+9=7 | | 11x=825 | | 6(x+2)=6x-5 | | 12x-36+4x=20(x-10) | | 17-8x=2(x+6) | | 2y^2=5y-6 | | -7b+6+8b=16 | | -3+6n=45 | | 2p+7=p+11 | | 2x+4+4x=16+3x | | 3x+2=-2x+23 | | -4(x+5)=1.66666667(3x-12) | | 4(2x-3)-9(x+2)=10 | | 17-x/9=10 | | -8(3v+7)=-17+4v | | 7x-60=-4 | | -138-2v=-19v+15 | | 17-x9=10 | | 2x+4+4×=16+3× | | 2c=9+3c | | -25-5b=6(1-6b) | | 4(x+5)-x=20+3x | | 4j-24=4{j-6} | | 12(2w-3)=12w-12 | | r-(-15)=73 | | 10+6x=6x+15 | | y=14–48/y | | -15.5n=-75.95 | | 22x=-13 | | -400-75x=100-25x | | -25=-x/2 | | -8c+44=-28 |